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ABSTRACT: Does the performance of an amorphous solid dispersion rely on having
100% amorphous content? What specifications are appropriate for crystalline content
within an amorphous solid dispersion (ASD) drug product? In this Perspective, the
origin and significance of crystallinity within amorphous solid dispersions will be
considered. Crystallinity can be found within an ASD from one of two pathways: (1)
incomplete amorphization, or (2) crystal creation (nucleation and crystal growth).
While nucleation and crystal growth is the more commonly considered pathway,
where crystals originate as a physical stability failure upon accelerated or prolonged
storage, manufacturing-based origins of crystallinity are possible as well. Detecting
trace levels of crystallinity is a significant analytical challenge, and orthogonal methods
should be employed to develop a holistic assessment of sample properties. Probing the
impact of crystallinity on release performance which may translate to meaningful
clinical significance is inherently challenging, requiring optimization of dissolution test
variables to address the complexity of ASD formulations, in terms of drug physicochemical properties (e.g., crystallization tendency),
level of crystallinity, crystal reference material selection, and formulation characteristics. The complexity of risk presented by
crystallinity to product performance will be illuminated through several case studies, highlighting that a one-size-fits-all approach
cannot be used to set specification limits, as the risk of crystallinity can vary widely based on a multitude of factors. Risk assessment
considerations surrounding drug physicochemical properties, formulation fundamentals, physical stability, dissolution, and crystal
micromeritic properties will be discussed.
KEYWORDS: amorphous solid dispersion, critical quality attributes, processing, physical stability, dissolution, crystallinity

1. INTRODUCTION
Amorphous solid dispersions (ASDs) have become a popular
strategy for oral delivery of poorly water-soluble compounds.1,2

As of 2023, more than 30 US FDA-approved products
containing an ASD have been commercialized, using spray
drying, hot melt extrusion, and other manufacturing
technologies for their production.3 The underlying complexity
of amorphous solid dispersions results from the interplay of
raw material attributes, formulation, manufacturing processes,
and resulting critical quality attributes (CQAs) on product
performance and subsequent bioavailability. A major under-
lying risk of these formulations lies in the propensity of the
amorphous drug to crystallize due to thermodynamic
instability.4

Per ICH Q6A guideline, when a polymorphic form
(including the amorphous form) can affect drug product
performance, bioavailability, or stability, the solid state form
should be specified, monitored, and controlled.5 Thus, there is
widespread interest in setting specifications for crystalline

content so as to limit the impact of crystallinity on the dosage
form’s performance in the clinical setting.6 However, due to a
multitude of factors, the relevance and risk of crystallinity in a
formulation and setting specification limits cannot use a one-
size-fits-all approach. This perspective will briefly review
several of these aspects, in particular to illuminate the origins
of crystallinity in ASDs and potential impact on release
performance. Several case studies will then serve as the basis to
highlight areas of low and high risk of crystallinity within ASD
formulations. Considerations surrounding drug physicochem-
ical properties, formulation fundamentals, physical stability,
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dissolution, and crystal micromeritic properties will be
discussed in terms of a risk assessment strategy.

2. MATERIALS SCIENCE TETRAHEDRON FOR
AMORPHOUS SOLID DISPERSIONS

The materials science tetrahedron (MST) concept pioneered
by Sun for pharmaceutical systems7 can be applied to the
formulation and processing design of ASDs. A nonexhaustive
list of material properties, processing variables, structural
attributes, and product performance metrics are listed in Figure

1 to describe the pharmaceutical development aspects relevant
to ASDs. Material properties are interconnected with
processing choices, which combine to impact the structure
and CQAs of ASD drug product intermediates, which in turn
impact the product performance. In addition, structural
attributes such as homogeneity and crystallinity can change
over time upon storage. Developing an understanding of the
structure−property relationship with respect to crystallinity is
among the primary goals of this Perspective.

Figure 1. Materials science tetrahedron (MST) as applied to amorphous solid dispersions. The two most popular processing techniques, spray
drying and hot melt extrusion, are included to provide examples of key processing variables.

Figure 2. Formation pathways of crystallinity in amorphous solid dispersions: (a) incomplete amorphization, (b) nucleation and crystal growth.
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Aside from the well-known attributes of physical, chemical,
and microbiological purity that are expected of a drug product,
several CQAs play a significant role in the performance of
ASDs (Figure 1). First, the amorphous drug must be fully
transformed from the crystalline material. Any crystallinity in
the system, either remaining from the manufacturing process
or generated upon storage, may contribute to loss of solubility
advantage and further development of crystallization during
storage or upon dissolution.8−11 Next, the ASD intermediate
must be homogeneous. Lack of homogeneity, due to poor
miscibility, high drug loading, poor mixing, or phase separation
may accelerate crystallization.12−14 Lastly, for thermal-based
processing methods, the drug and/or polymer may undergo
chemical degradation.15−17

The crystallinity aspect is the main focus of the remainder of
this Perspective, although MST aspects of material properties,
ASD structure, and processing contributions will be discussed.
Crystallinity in ASDs may directly contribute to changes in
bioavailability.18 This may happen through three mechanisms.
First, crystallinity may result in lost solubility advantage. If the
drug is not in its amorphous form, it cannot contribute to the
solubility advantage. Second, crystals present may initiate
additional crystallization, causing reduced dissolution rate and
extent, as well as desupersaturation. Lastly, crystals may grow
during storage, further reducing solubility advantage and
hindering release performance.

3. FORMATION PATHWAYS OF CRYSTALLINITY IN
ASDS

Crystallinity may be found in an ASD from one of two
pathways: incomplete amorphization during processing
(Figure 2a) or crystal creation (Figure 2b). The incomplete
amorphization pathway (Figure 2a) may occur when the
crystalline-to-amorphous phase transformation is based on
crystal dissolution or size reduction mechanisms. The more
commonly considered pathway is that of crystal creation:
nucleation and crystal growth (Figure 2b). Most typically,
nucleation and crystal growth occur during long storage
durations, or under conditions used for accelerated stability
testing.19 However, crystals may be also created during
manufacturing depending on the processing conditions
employed.
3.1. Manufacturing Methods. ASD preparation methods

can be broadly classified as solvent-based or thermal-based
processes.20 Solvent-based ASD manufacturing processes
typically consist of three major steps: (1) dissolving the drug
and polymer in a volatile solvent, (2) removing the bulk of the
solvent to produce solids, and (3) secondary drying to further
remove any residual solvent.21 Solvent-based processes used to
produce ASDs include spray drying, coprecipitation, rotary
evaporation, vacuum drying, freeze-drying, and the use of
supercritical fluids.21,22 Solvent-based processes are more
common because they are applicable to a wide range of
compounds and are material-sparing in early phase develop-
ment.22,23

Thermal-based ASD manufacturing methods consist of two
major steps: (1) melting or dissolution of drug within the
polymer at elevated temperature and (2) rapid cooling of the
molten material so it solidifies into a one-phase system.21,24

Thermal-based methods include hot melt extrusion (HME)
and KinetiSol dispersing technology.21 For thermally stable
systems, HME offers several advantages over solvent-based
processing: it is solvent-free, inexpensive, continuous, high-

throughput, and easily scalable and requires only a small facility
footprint, enabling batch size flexibility and fast produc-
tion.25,26

Mechanochemical activation forms a third category of ASD
manufacturing methods.27 While this encompasses all kinds of
high-energy milling, cryomilling is the most common in the
literature.27−29 At present, there are no commercialized ASD
products which use this method.
3.2. Incomplete Amorphization Pathway. The incom-

plete amorphization pathway (Figure 2a) is most relevant to
manufacturing processes such as hot melt extrusion (HME),
Kinetisol dispersing, microwave-irradiation, or milling to create
amorphous forms.29−35 In such processes, thermal and/or
mechanical input is provided, which enable the crystalline drug
to dissolve, crystalline particles to be fractured, or the crystal
lattice to be otherwise disrupted. For some molecules, milling
may induce amorphization through reduction of crystallite size
and through propagation of crystalline defects.29,35−38 With
thermal-based processing, amorphization may take place by
solubilizing the drug in the molten polymer while providing
sufficient mixing energy to expedite the dissolution proc-
ess.32,39−41 As this type of processing is inherently kinetic, the
amount of processing time is key to complete the crystalline-
to-amorphous transformation. Residual crystals may remain if
insufficient thermodynamics (temperature) or mixing kinetics
(mechanical input, residence time) is provided.

This failure mode would also be relevant to solvent-based
processing. The bulk crystalline drug must fully dissolve in the
solvent, prior to processing. If the drug has not completely
dissolved upon processing, crystallinity will remain in the final
ASD particles.
3.2.1. Thermodynamics of ASD Formation during

Thermal-Based Processing. For thermal-based processes,
such as HME, Kinetisol, or microwave-irradiation, the
minimum temperature threshold for successfully dissolving
all crystalline drug (solute) into the molten polymer (solvent)
is the formulation critical temperature (Tc), sometimes
referred to as the solubility temperature (Ts).

30 The kinetics
of the dissolution process is typically considered with respect
to the concentration gradient of the equilibrium solubility of
the crystalline drug in the molten polymer minus the
concentration at time, t, (Cs − C) defined by the Noyes-
Whitney (eq 1) and Stokes−Einstein equations (eq 2)

=C
t

DA
hV

C C
d
d

( )s (1)

=D
k T

r6
B

(2)

where dC/dt is the differential change in solute concentration
in solution with time, D is the diffusion coefficient, A is the
surface area available for dissolution, h represents the mass
transfer boundary layer thickness at the solid−liquid interface,
and V is the volume of the liquid phase. Terms impacting the
diffusion coefficient, D, include the Boltzmann constant kB,
temperature, T, viscosity, η, and radius of the diffusing species,
r. The solubility of the drug in the polymer refers to the ability
of the crystalline form of the drug to be solubilized in a
polymer.42 Thus, for a fixed composition, the temperature
where all of the crystalline drug can be solubilized can be
determined, which should occur at a temperature lower than
the drug melting point, for a miscible drug−polymer system.
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In a miscible drug−polymer system, solubility determina-
tions by multiple methods are considered to be thermodynami-
cally equivalent.43 For example, in the melting point depression
method by differential scanning calorimetry (DSC), the
solubility equilibrium is approached by heating a fixed
composition to determine the temperature at which dissolution
is complete (melting point offset temperature). In contrast,
during processing, complete solubility is achieved by solute
dissolution into the molten polymer from an under-saturated
state under isothermal conditions.

Solubility is a thermodynamic parameter and can be
theoretically described through the Flory−Huggins framework
of melting point depression.42,44−48 Moseson and Taylor
describe the theoretical concepts behind the application of this
theory to HME process design.30 A miscible drug−polymer
system is one in which the (supercooled) liquid form of the
drug homogeneously mixes with the polymer across all
compositions.14 Miscible drug−polymer systems exhibit
melting point depression because the chemical potential of
the drug in the drug−polymer system is reduced relative to
that of the pure drug due to a favorable entropy of mixing and,
for some systems, an exothermic mixing enthalpy, as shown in
the temperature−composition phase diagram in Figure 3a.
This relationship is described by eq 3
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(3)

where Tm is the melting temperature of the pure drug (in
Kelvin), Tc is the depressed melting point of the drug−

polymer system (in Kelvin), R is the gas constant, ΔH is the
enthalpy of fusion of the drug, ϕ is the volume fraction of the
drug, m is the ratio of the polymer segment to drug molecular
volume, and χ is the Flory−Huggins interaction parameter. A
negative or small positive value of χ indicates a miscible
system. Limitations of this approach and further discussion of
the interaction parameter can be found in the literature.49−52

Temperature−composition phase diagrams can be readily
constructed by thermal analysis methods such as the melting
point depression DSC method or recrystallization meth-
od.30,53−55 Besides Flory−Huggins theory, other approaches
are commonly used to determine the solubility temperature
and to build phase diagrams, such as PC-SAFT and empirical
models.56−58 Rheology has also recently been shown to
identify the attributes of crystal dissolution, as an alternative
means of determining Tc.

59,60 Phase diagrams are also useful
for identifying compositions which have thermodynamic and/
or kinetic stability, based on considering the storage temper-
ature of the system and the location of the solubility line and
glass transition temperature line. In region 1 (Figure 3a),
below the glass transition temperature curve and above (or to
the left of) the solubility curve, a composition has both
thermodynamic and kinetic stability. In region 2 (Figure 3a),
below the glass transition temperature curve and below (or to
the right of) the solubility curve, compositions have some
degree of kinetic stability.
3.2.2. Kinetics of ASD Formation during Thermal-Based

Processing. As interpreted from the Noyes−Whitney (eq 1)
and Stokes−Einstein equations (eq 2), amorphization through
a dissolution-based mechanism is inherently kinetic. While
solubility is a thermodynamic requirement, additional material
structural and property variables intersect with processing

Figure 3. Temperature−composition phase diagrams describing the thermodynamics and kinetics of drug−polymer phase behavior and
representing the hot melt extrusion process. (a) Temperature−composition phase diagram as related to the hot melt extrusion process. ASDs can
be formed in the melting (above the drug’s Tm) or dissolution processing regime (bounded by the drug’s melting temperature and formulation
critical temperature Tc located on the solubility line). Two regions are highlighted below the formulation Tg line: Region 1 (to the left of the
solubility line) represents compositions and temperatures of thermodynamic and kinetic stability, and region 2 (to the right of the solubility line)
represents compositions and temperatures of a thermodynamic metastability and kinetic stability. (b) Process operating design space diagram,
delineating three processing regimes (melting, dissolution, and suspensions) by temperature and kinetic considerations. The black dotted line
represents the time corresponding to the complete crystalline-to-amorphous transition at a given temperature. With changes in particle-level
properties, this transition could be shifted earlier or later as represented by the yellow dotted lines, increasing risks for processing challenges or
residual crystallinity. Higher temperatures and greater process kinetics (e.g., long residence time, high specific mechanical energy) correspond to a
greater risk for thermal degradation of drug and/or polymer, while lower temperatures and reduced process kinetics correspond to a greater risk of
residual crystallinity. Figure adapted and reprinted with permission from refs 30 and 41. Copyright 2018 Elsevier and 2021 American Chemical
Society.
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variables to achieve complete dissolution.41,61 Kinetics of
dissolution are accelerated by high surface area, high diffusion
coefficients, high temperatures, and intense mixing kinetics
through operating parameters and equipment design. Exami-
nation of residual crystals, i.e., those incompletely dissolved or
destroyed during thermal processing, using transmission
electron microscopy (Figure 4) suggests dissolution mecha-
nisms beyond diffusion.31,62 Under thermal exposure in the
absence of mixing, accelerated dissolution kinetics were

observed due to crystal defects, which served to increase
available surface area for dissolution, via a fragmentation
mechanism (Figure 5).31 In a processing environment, this
same phenomenon was observed experimentally and con-
firmed with population balance modeling of the hot melt
extrusion process using input materials with various particle
attributes (e.g., particle size, defect density), demonstrating the
relevance of the mechanism to the formation of ASDs.41 In the
HME process, fragmentation could result both from

Figure 4. TEM images of residual crystallinity in indomethacin/PVPVA ASDs. Figure adapted and reprinted with permission from refs 8, 31, and
62. Copyright 2018 American Chemical Society, 2019 American Chemical Society, and 2020 Elsevier.

Figure 5. Models of crystal dissolution into polymer melts: (a) diffusion-based crystal dissolution and (b) defect-site driven crystal dissolution and
fragmentation. Figure reprinted with permission from ref 31. Copyright 2019 American Chemical Society.
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accelerated dissolution at defect sites, but also through
mechanical breakage at these same sites, where the crystal is
weaker. The body of evidence thus far suggests that using
crystals of greater defect density can accelerate amorphization
kinetics for ASD formation.31,41,62

3.3. Crystal Creation Pathway. The more commonly
considered pathway is that of crystal creation: nucleation and
crystal growth (Figure 2b). An amorphous solid or super-
saturated solution will ultimately crystallize to the stable form.
This conversion will happen over a time scale depending on
the crystallization tendency of the compound, as well as
thermodynamic driving forces and kinetic factors. Depending
on kinetics and other process parameters, nucleation or growth
can compete for the consumption of supersaturation in the
amorphous solid.63 Upon storage of an ASD, crystals nucleate
and grow in the ASD intermediate or drug product. The
common rule-of-thumb to achieve a stability period of years is
that a storage condition must be 50 °C below the sample’s
Tg.

64 However, there are several reported examples of ASDs
having achieved long-term physical stability of years at much
less stringent stability conditions.65,66 Several review articles
are available which cover the topic in depth.19,67,68

Many physical stability risk factors have been identified in
the literature, which include the drug’s crystallization
tendency,69−71 polymer selection and intermolecular inter-
actions,72−74 the overall molecular mobility of the system,64

the use of a high drug loading which the polymer cannot
stabilize,13,14,75 and water-induced plasticization and/or phase
separation.76,77 Therefore, selection of appropriate storage
conditions and packaging is of considerable importance for an
ASD formulation during its shelf life and once out of its
primary packaging and dispensed to patients. A risk-based
approach was recently outlined by Liu and co-workers.78

3.3.1. Crystallization Considerations Based on Theoretical
Aspects. 3.3.1.1. Nucleation. The formation of crystals begins
with nucleation. Nucleation may take place in the absence of
crystalline matter (primary nucleation, higher activation energy
barrier) or in systems where crystals are present (secondary
nucleation, lower activation energy barrier). Classical nuclea-
tion theory (CNT), although originally derived for con-
densation of a vapor into a liquid, is the most widely used
theory to describe the nucleation process of crystals from
supersaturated solutions.79 The formation of a stable nucleus
occurs when individual molecules orient themselves in a lattice
structure to form a critical nucleus of sufficient size to resist
dissolution. Below the critical size, the nuclei formed are
unstable and can redissolve.

The nucleation rate, J, is the number of nuclei formed per
unit time per unit volume, which can be expressed by eq 4

Ä
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ÅÅÅÅÅÅÅÅÅÅ
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where A is a constant, γ is the interfacial tension, υ is the
molecular volume, kB is the Boltzmann constant, T is the
temperature, and S is the supersaturation. Supersaturation, a
measure of the excess chemical potential relative to the
reference state (the crystalline solid), can be expressed by eq 5

=
*

= * * *S
RT

a
a

c
c

ln ln ln
(5)

where μ is the solute chemical potential in the supersaturated
solution, c is solute concentration, a is solute activity, γ is the

solute activity coefficient, and * is the property at saturation
(i.e., for a solute in a solution in equilibrium with the crystal).
For dilute aqueous solutions without solubilizing components,
it may be reasonable to assume that γ/γ* is 1, leading to
expression of the supersaturation ratio, S, in terms of the
relative concentrations (eq 6).

= *S c
c (6)

These equations provide insight into the role of temperature
and supersaturation on nucleation rate, in that higher
temperatures and supersaturation will increase nucleation
rates. Due to the stochastic nature of the nucleation process,
faster agitation rates (in solution) will promote nucleation.
Molecular interactions between the drug and additives may
interfere with or promote the self-assembly process.80

Because nucleation requires an activation energy barrier to
be overcome, the extent of supersaturation is a critical
parameter in determining if crystallization will be observed.
It is well-known that there often exists a metastable zone,
where nucleation is thermodynamically favored because the
solution is supersaturated, but crystallization is not seen over
the observation time scale. Thus, the extent of supersaturation
rather than the existence of supersaturation per se is an
important consideration. Supersaturation does not always
indicate that a solution will crystallize over a relevant time
frame, and solutions with low extents of supersaturation can
persist for long periods of time. Furthermore, additives such as
polymers may change the metastable zone width;81 polymers
that inhibit nucleation allow higher supersaturation to persist
for longer periods of time.82

3.3.1.2. Crystal Growth. After the formation of stable nuclei,
the crystal growth rate process begins. Growth depends on
many external and internal factors. External factors such as
temperature, supersaturation, solvent, and presence of
impurities or additives will affect the type of interactions at
the liquid−solid interface. Internal factors such as the three-
dimensional crystal structure and crystal defects will be
determined by the nature and strength of the intermolecular
interactions between the solution species and crystal sur-
face.63,83 The different growth rates of each crystal face govern
the resulting morphology of the crystal.83,84

Crystal growth can be described as a diffusion−reaction
model, where a diffusion process transports molecules from the
bulk liquid to crystal surface and the solute molecules arrange
at the crystal surface where they integrate into the crystal
lattice. The overall growth rate per unit area, RG, combines the
diffusion-controlled and reaction-controlled growth rates into
eq 7

=R K C C( )g
G G x eq (7)

where KG is the overall crystal growth coefficient, Cx − Ceq
describes the driving force for crystal growth, and g is the order
of the crystal growth process.63 Studies have shown that
polymers can reduce crystal growth rates, and the underlying
mechanism has been attributed to adsorption of the polymer
onto the crystal surface which interferes with the ability of the
solute molecule to integrate into the crystal lattice.8,85,86 As
crystal growth proceeds, supersaturation is reduced because
the excess solution concentration decreases as molecules
transfer from the solution phase to the growing crystals. As the
supersaturation decreases, the growth rate decreases. When
growth inhibitors are present, growth may be arrested even
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though supersaturation still persists in the solution.87,88 This is
an important concept, because it means that even though
crystallization has occurred, when polymers are also present in
solution, the concentration may not return to the equilibrium
crystalline solubility over a relevant time frame.
3.3.1.3. Melt Crystallization. The general principles

discussed above apply to solution-mediated crystallization
but also take place in supercooled liquids, i.e., melt
crystallization. In addition, it should be highlighted that, for
crystallization from supercooled liquids and glasses, molecular
mobility is often the rate-limiting step in crystallization. In
other words, although the thermodynamic driving force is
favorable to nucleation and crystal growth, the hindered
molecular mobility in a deeply supercooled liquid or glass
prevents or substantially delays molecular self-organization.
The reader is referred to several reviews on crystallization of
pharmaceutical amorphous glasses and miscible amorphous-
excipient systems.19,89−92

3.3.2. Nucleation and Crystal Growth Due to Processing.
Nucleation and crystal growth may take place as a result of
manufacturing processes. In solvent-based processing, the
solvent and polymer system must adequately solubilize/
stabilize the drug in the amorphous form upon solvent
evaporation. In a cosolvent system, if solvent evaporation rates
are dissimilar, drug may be susceptible to recrystallization (or
phase separation) due to insufficient solubility in the more
slowly evaporating solvent, combined with a high mobility.22,93

Moisture is an additional risk factor for phase separation and
crystallization, if present in the solvent system or if
uncontrolled relative humidity (RH) conditions are found in
the manufacturing environment.94,95 For solvent-based pro-
cessing, the secondary drying step to remove residual solvent
could take place hours later. During this time, the overall
system mobility is higher due to the residual solvent, which
could be a risk factor for crystallization. In thermal processing,
the cooling rate must be sufficient to maintain the amorphous
form of the drug through temperature zones where nucleation
and crystal growth are favored and mobility is high.75

Crystallization may also take place following thermal or
solvent-based processing if the drug loading is too high for
stabilization by the polymer.13,75 These concepts can be
described by a ternary phase diagram representing the drying
process (Figure 6), where the thermodynamic or kinetic
stability may or may not be achieved based on the spray drying
conditions selected.96 An excellent series of papers by
Sadowski and co-workers further expand on this design space
to address many additional factors including solvent selection,
multisolvent systems, miscibility gaps during drying, liquid−
liquid phase separation in the supersaturated spray feed during
drying, and crystallization.93,96−100

4. CRYSTALLINITY DETECTION METHODS AND IN
VITRO PERFORMANCE TESTING
4.1. Solid-State Detection Methods. Detection of

crystallinity in ASDs is a significant analytical challenge.
Orthogonal analytical tools should be employed to develop a
holistic assessment of the sample properties, with an
understanding of the limitations which stem from the
properties of the instrument, method, or sample. The need
to detect low levels of crystallinity is significantly hindered by
dilution of the ASD powder into a matrix of excipients within a
drug product. An additional complexity is the unsuitable nature
of many of these characterization tools in a quality control

(QC) manufacturing environment but which may find
usefulness during product development.

X-ray powder diffraction is the most common tool for
crystallinity detection101 but has relatively poor sensitivity to
detect low levels of crystalline content, limited by mass fraction
and dilution, crystal quality, and method parameters.9,30,101−104

Solid-state nuclear magnetic resonance spectroscopy (ssNMR)
is a powerful technique to distinguish small fractions of
crystalline material in a primarily amorphous sample, although
is not commonly available as a quality control tool.105 For
example, using 19F ssNMR methods, 0.04% crystallinity was
quantified in an ASD tablet containing a fluorinated drug.106 It
should be noted that this result may not be generalizable to all
drugs or drug products, depending on fluorine content (or lack
thereof) and instrument parameters. Differential scanning
calorimetry (DSC) can effectively demonstrate that a single
glass transition (Tg) is formed for the ASD system, although it
may yet be inhomogeneous on a smaller length scale, which
may lead to physical instability.12,107 DSC is relatively
ineffective at identifying crystallinity in miscible drug−polymer
systems, because the dynamic heating process can induce
crystal dissolution, and detection is further limited by mass
fraction and domain size.9,30,43,102 Other techniques have been
used to detect crystallinity, such as terahertz spectroscopy,108

mid-infrared spectroscopy (MIR),109,110 near-infrared spec-
troscopy (NIR),111,112 and Raman spectroscopy.113

Several microscopy techniques are also capable of differ-
entiating amorphous and crystalline content. Polarized light
microscopy (PLM) is highly sensitive to detect the presence of
crystallinity, even in an X-ray amorphous sample,75 but
resolution is limited by the diffraction limitation and thus it
may not detect very small crystals. Crystals in hot melt
extruded ASDs have been regularly identified to be smaller

Figure 6. Schematic drying process in a ternary system consisting of
API, polymer, and solvent. The API solubility at different drying
temperatures T1 and T2 (T2 > T1) are indicated by orange lines, where
the orange region represents where the API is supersaturated. Blue
lines indicate the residual-solvent (RS) contents represented by
achieving different extent of drying completion. Glass transitions at
different system temperatures are shown as green dashed lines, and
green regions represent the system being below the glass transition
temperature. The drying process is illustrated for two different initial
feeds (with API loads equal to 0.2 and 0.4 in the solvent-free ASD,
blue circles 1 and 2) by black arrows resulting in a thermodynamically
stable ASD above glass transition (white circle), a thermodynamically
and kinetically stable ASD (green circle), a thermodynamically
unstable and kinetically metastable ASD (orange star), or a
thermodynamically unstable and kinetically stabilized ASD below
glass transition (green star). Figure reprinted from ref 96 per open
access terms associated with Creative Commons CC-BY license.
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than 1 μm8,9,62,114 and as small as 5−10 nm.62 Transmission
electron microscopy (TEM) is highly sensitive but low
throughput to identify crystals in amorphous systems through
electron diffraction.62,114 Scanning electron microscopy (SEM)
can be used to detect trace crystallinity based on their
distinctive shape but is only useful for detecting surface
crystals.115,116 Second harmonic generation is highly sensitive
to noncentrosymmetric systems, enabling quantification of
trace crystallinity in the parts per billion range.117−119 X-ray
micro computed tomography (microCT) is useful to identify
low levels of crystallinity (<1%), but resolution is limited to
crystals ∼10 μm or greater.120

4.2. Release Testing. In vitro release testing has also been
observed to be more sensitive to the presence of crystals or
other phase behavior changes in amorphous formulations than
most other analytical techniques.121−125 However, typical
experimental variability of ±5% indicates that detection of
<10% crystallinity might not be possible in a QC environ-
ment.124 This suggests that release testing may be an
appropriate challenge test by which to validate solid-state
methods which can detect the necessary level of crystallinity
which may be considered significant for that specific
formulation. However, optimizing release test variables to
address the complexity of ASD formulations, in terms of drug
physicochemical properties (e.g., crystallization tendency),
level of crystallinity, crystal reference material selection, and
formulation characteristics is a tremendous challenge.124 A
recent publication by the IQ Consortium Dissolution Working
Group reviewed challenges of dissolution testing to detect
crystallinity in amorphous solid dispersions and presented case
studies.126

Even when crystallinity is detected, does it matter to the
performance of the product? What level of scrutiny is
sufficient, enabling appropriate specifications to be established?
The ICH Q8(R2) guideline states that “scientific under-
standing to support the establishment of the design space,

specifications, and manufacturing controls” should be
provided.127 Certainly, a well-designed in vivo study would
provide the ideal metric to answer to this question; however, in
some scenarios, such as with medications designed for
oncology populations, such testing may have ethics concerns.
Well-designed dissolution studies to detect drug release can
illuminate this question. The goal of a release test for
supersaturating systems is to provide an in vitro quality
control tool with sufficient discriminating power to link
product changes (e.g., interbatch variability, manufacturing
process, formulation) to clinical performance.128,129 With
complex formulations such as amorphous solid dispersions,
traditional sink conditions have little relevance to the
biopharmaceutical performance.80 Nonsink conditions enable
evaluation of both release and crystallization kinetics of
supersaturating systems and are thus essential for assessing
the product performance.80,130−132 Further, noncompendial
testing methods including an absorptive compartment can be
used to link formulation changes and release profiles with a
more in vivo relevant platform.133−136

Sink and nonsink conditions can be defined by the
dimensionless sink index (SI),80,137,138 where the following
equations represent sink index with respect to crystalline
solubility (eq 8) and amorphous solubility (eq 9):

= C
V

SI
dose/

cr
cr (8)

= C
V

SI
dose/am

am

(9)

where Ccr and Cam represent the crystalline and amorphous
solubility respectively, dose is the amount of drug added to the
dissolution experiment, and V is the media volume. Several
studies have begun to illuminate the predictive quality of a
dissolution test based on sink index, representing the driving
force for dissolution and crystallization, for detecting or

Figure 7. Pathways of dissolution and crystallization and resulting idealized dissolution profiles of amorphous solid dispersion (a) without
crystallinity and (b) containing crystallinity. Figure adapted and reprinted with permission from ref 8. Copyright 2020 Elsevier.
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evaluating the impact of crystallinity on the dissolution
performance of an ASD.9,139,140 It should be noted that
amorphous solubility is defined as the concentration at which a
liquid−liquid phase separation event may be observed,126,141

and this value may change depending on the composition of
the amorphous drug−polymer system and media addi-
tives.142−146

Pathways of dissolution and crystallization resulting from the
idealized ASD dissolution profiles at SIcr < 1 and SIam = 1 dose
conditions are shown in Figure 7. In this scenario (Figure 7a),
all amorphous material can theoretically dissolve to create a
supersaturated solution, given sufficient driving force for
dissolution and an absence of crystallization (the “spring and
plateau” profile) and be absorbed. If crystallization occurs,
desupersaturation will be observed (the “spring and parachute”
profile). In systems containing crystallinity (Figure 7b), crystal
seeds now can influence the resulting dissolution profiles, and
two corresponding profiles can be anticipated.8,80 First, the
extent of supersaturation that can be achieved is proportional
to the level of amorphous content, in essence a lost solubility
advantage. Any crystalline content is essentially inert, as it has
no driving force for dissolution, and crystals do not grow. In
the second scenario, reduced dissolution rate and desupersatu-
ration are observed due to crystal growth occurring
immediately upon dissolution. It is readily apparent that the
first scenario is preferable, and crystallinity would represent a
relatively low-risk to product performance. The reduction in
area under the dissolution curve in the second scenario would
translate to a significant reduction in bioavailability.

The scenario of SIam < 1 dose conditions represents an even
more likely biorelevant scenario for amorphous solid
dispersions, where fluid volumes are low and doses are high.
Achieving concentrations in excess of the amorphous solubility
has been shown to result in the formation of colloidal, drug-
rich aggregates, i.e., the occurence of liquid−liquid phase
separation (LLPS). These in turn have been shown to result in
increased bioavailability due to a reservoir effect,147−149 where
recent studies suggest that an increased number of colloidal
species help to maintain a concentration closer to the
amorphous solubility at the membrane surface, thereby
improving flux.150−152 For this favorable process to occur,
crystallization must be prevented. The presence of crystals in a

formulation may reduce the achievable supersaturation
through crystal growth mechanisms.

Another approach that has been investigated to detect
crystallinity within a dissolution test relies on differences in
dissolution rate associated with each solid-state form.125 There
are several concerns with this approach. First, extensive control
over the particle surface area distribution is required in order
to eliminate this source of variability. Next, the applicability of
such a method is limited to the ASD drug product
intermediate only, as the excipient matrix of a drug product
will impact release rates. Other sources of batch-to-batch
variability may be found within the drug product which may
also impact the release rate.140,153 This approach is also limited
to a subset of ASDs in which the release rate is governed only
by the amorphous form and not impacted by the polymer
carrier where congruent release of drug and polymer are
observed.154 Lastly, as most amorphous compounds have
release rate advantages of 2−20× over their crystalline
counterparts,141 sufficient discriminating ability may not be
found for many compounds.
4.3. Reference Materials. When investigating the impact

of crystals on an amorphous formulation in dissolution
performance testing, the source of those crystals should be
scrutinized. Crystals can be of three basic origins, as described
earlier: (1) crystals grown within the ASD, (2) spiked/seeded
crystals, or (3) residual from the manufacturing process
(Figure 8). The properties of these crystals are potentially
quite different in particle size/surface area, crystal habit,
polymorphic form, and matrix environment, and their resulting
contributions to product performance can also be expected to
vary. The key property of crystal seeds is how they drive crystal
growth, which is directly related to surface area as well as other
properties, but notably not related to their mass amount. Thus,
bulk crystalline material is not well-suited to mimic intrinsic
crystals that may be found in an amorphous solid dispersion
resulting from a nucleation and growth or a crystal dissolution
pathway (Figure 2). These differences in reference materials
were highlighted in a recent industry white paper.6

Grown crystals are useful to represent the impact of stability
performance failures. These crystals may be small or large,
depending on the extent of crystallization or the conditions
under which they were grown, and could be of multiple
polymorphic forms. Residual crystals have a manufacturing

Figure 8. Schematic description of three types of crystallinity found in ASDs and used for performance testing risk assessment: grown crystallinity,
spiked, and residual crystallinity. Although quantities of crystals on a mass basis are equivalent in each case, differences in detectability or
dissolution performance impact may arise for different analytical methods. Figure reprinted with permission from ref 6. Copyright 2022 Elsevier.
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failure origin. In the case of a hot melt extrusion process
failure, they are most likely to be the thermodynamically stable
form and may exist as nanometer-scale crystals or as relatively
few but large crystals.41,62 Alternately, if the crystals have
nucleated (as in a spray drying process failure), they could be
of multiple polymorphic forms. Generally, regardless of origin,
residual crystals are likely to be at the nanometer-scale (<1
μm) and likely to have high surface area and defect density.8,62

Both grown and residual crystals will have intimate contact
with the polymeric matrix, which may slow or inhibit
crystallization. Grown crystals may have higher polymer
concentration in the immediate vicinity of nucleated crystal,
where the API has been depleted due to incorporation into the
nucleated crystals.155 Nucleation events need not be detectable
by common methods in order to have significant product
performance impact.156,157

Spiked (or seeded) crystals represent a departure from most
of those expected properties. Spiked crystals would be those
added from a source of bulk drug crystals, so they would be of
defined polymorphic form and particle size distribution.
Notably, because these crystals are quite likely to be
comparably large (>10 μm) and were grown under controlled
conditions, they have low surface area and defect density
compared to either other source of intrinsic crystals. Lastly,
spiked crystals do not have intimate contact with the matrix
environment to initiate interactions. These crystals would be
generally expected to grow much more slowly and impact the
performance of the ASD to a lesser extent.158 It is worth noting
that spiked crystals enable the use of different polymorphic
forms to assess their impact on dissolution and precipitation
properties.159

A related caution is the consideration of crystallinity on a
weight % basis. The same 10% crystallinity from spiked crystal
represents far lower surface area and lack of intimate
interactions than that from grown or residual crystals of
smaller size. Hence, establishing acceptable limits based on
spiked crystals is particularly challenging, as these measures
likely underpredict the impact of grown or residual crystals.
Thus, use of dissolution tests as a direct surrogate for solid-
state quantification is particularly challenging.10,124

5. CASE STUDIES
Now that the framework for understanding the origin and
significance of crystallinity in ASDs has been established,
reviewing examples from the literature will enable us to look at
limitations of crystallinity detection methods, design of
performance tests, and outcomes for different scenarios. The
following case studies were selected to cover a range of model
compounds and manufacturing methods and to illuminate
different crystallinity formation pathways.
5.1. Case Study 1: Indomethacin/PVPVA HME ASDs.

Indomethacin/PVPVA was used as a model drug−polymer
system to investigate the correlation of temperature−
composition phase diagrams and thermodynamic solubility
on crystallinity of ASDs produced by HME.30 A formulation
critical temperature of 131 °C was found for the 50% DL,
indicating that all crystalline drug could be solubilized in the
molten polymer at that temperature (Figure 9a). Using
temperatures at or above the formulation critical temperature
(Tc), a fully amorphous extrudate could be prepared, given
sufficient residence time. At temperatures below the Tc,
residual crystallinity, as detected by XRPD, remained
regardless of temperature or residence time (Figure 9b). The

process operating design space (processing temperature vs
residence time) enabled a sensitivity comparison of several
crystallinity detection methods (Figure 9c). PLM, although
nonquantitative, was found to be more sensitive than XRPD,
and both were more sensitive than DSC to crystallinity in some
formulations. In a formulation prepared at the Tc and for the
longest residence time used, which was found to be amorphous
by PLM, XRPD, and DSC, crystals as small as 5−10 nm were
observed by TEM.62

Nonsink dissolution profiles of indomethacin/PVPVA ASDs
containing 0−25% residual crystallinity demonstrated a loss in
achievable supersaturation (Figure 10a).8 Dissolution profiles
of physical mixtures of a fully amorphous ASD and spiked
crystals to represent 0−40% crystallinity demonstrated a

Figure 9. (a) Indomethacin/PVPVA temperature−composition phase
diagram. (b) Percent (%) crystallinity vs processing temperature for
ASD samples produced by HME. (c) Process operating design space
(temperature vs residence time) demonstrating differential sensitivity
among crystallinity detection methods. Figure adapted and reprinted
with permission from ref 30. Copyright 2018 Elsevier.
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similar loss in achievable supersaturation (Figure 10b). For
both types of preparations, the loss fell along the theoretical
maximum concentration which corresponds to the level of
amorphous content in the preparation (Figure 10c). This
indicates that the crystal seeds present in the mixture do not
grow, and dissolution rates are not affected. Adsorption of the
polymer onto the crystal surfaces was shown to prevent/slow

crystal growth. The HME ASDs had slightly lower achievable
concentration, which was hypothesized to be due to the greater
surface area and surface energy of the residual crystals in
comparison to the bulk crystals used in the physical mixtures
or systematic underestimation of crystalline content in HME
ASDs by the XRPD quantification technique.
5.2. Case Study 2: Bicalutamide/PVPVA HME ASDs.

Similar to the indomethacin/PVPVA system, melting point
depression was also observed for bicalutamide/PVPVA ASDs,
where a formulation critical temperature of 145 °C was
determined.9,41 HME ASDs were prepared using processing
conditions which enabled a fully amorphous ASD to be
prepared, as well as three samples with crystallinity up to 30%.
One crystalline sample was considered to have less than 1%
crystallinity, whereby the level was not detectable by XRD but
could be observed by TEM.9

The nonsink dissolution profile of the fully amorphous
bicalutamide/PVPVA ASDs indicated matrix crystallization
(Figure 11a), as complete drug release was not achieved and
desupersaturation was not observed (which would be due to
solution-mediated crystallization). Time lapse imaging by
polarized light microscopy showed nucleation at the solid−
liquid interfaces, confirming the matrix crystallization pathway
(Figure 11b). The metastable polymorph was formed through
this crystallization pathway (Figure 11c). For samples
containing crystallinity, distinctly lower supersaturation was
achieved, because of rapid crystal growth of the stable
polymorph within the amorphous solid (Figure 11a,b,d). The
dose conditions were modulated within the study, and matrix
crystallization was observed to occur in samples containing
crystallinity even under sink conditions, highlighting the
detrimental impact of even <1% crystallinity within this
drug−polymer system.9 Follow-up studies regarding the matrix
crystallization pathway of bicalutamide/PVPVA ASDs in-
dicated that risk factors for matrix crystallization included
high drug loading above the system’s limit of congruency
(LoC) and processing which mechanically activated the
sample.160

5.3. Case Study 3: Comparison of Spray Drying and
HME To Prepare Naproxen/PVP ASDs. A study by Haser et
al. investigated the formation and physical stability of 30% and
60% drug-loaded naproxen/PVP ASDs through two manu-
facturing methods: spray drying and hot melt extrusion.75 Fully
amorphous ASDs could be prepared at 30% drug loading, and
no crystallization was observed after 8 weeks storage at 40 °C
(Figure 12). Crystallinity was detected in the 60% drug loading
ASDs directly after manufacture by both spray drying (6%)
and hot melt extrusion (0.4%), indicating that the drug loading
was beyond what the polymer could stabilize, and that the
mobility of the drug during the solvent drying process was
greater than that in the melt during cooling or that the
thermodynamic driving force for crystallization was higher
during spray drying. Upon stability storage, the level of
crystallinity increased in both samples, from 6% to 22% in the
spray dried sample and 0.4% to 3% in the hot melt extruded
sample.
5.4. Case Study 4: Kinetisol Processing Condition

Selection To Balance Degradation and Crystallinity. In
Kinetisol processing to form ASDs, increased high shear
mixing may result in greater degradant levels but lower
crystallinity. For a shear sensitive drug, a balance may be
sought to find processing conditions where acceptable
thresholds of both CQAs could be achieved. In a study by

Figure 10. Dissolution profiles of (a) indomethacin/PVPVA ASDs
prepared by HME containing 0−25% residual crystallinity and (b)
indomethacin/PVPVA physical mixtures (PM) of ASD prepared by
solvent evaporation (SE) and crystalline drug to yield a crystalline
content of 0−40%. (c) Comparison of theoretical maximum
concentration based on crystalline content and achieved dissolution
concentration from HME ASD or SE ASE/PM samples. Figure
adapted and reprinted with permission from ref 8. Copyright 2020
Elsevier.
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Davis et al., a shear-labile drug (LY3009120) was processed by
Kinetisol under various processing conditions to obtain
samples of increasing degradation levels (0.7%, 2.0%, 3.1%)
but decreasing crystallinity levels (2.3%, 0.9%, 0.1%).11

Stability was conducted at 25 °C/60% RH for 4 months,
and no increase in degradant products or crystallinity was
noted. 19F ssNMR spectroscopy was used for crystallinity
quantification, as DSC and XRPD were found to lack the
sensitivity required. Nonsink pH shift dissolution testing
indicated desupersaturation in the sample containing 2.3%

crystallinity but not in samples of lower crystallinity levels. This
indicated a threshold where a balance between crystallinity and
degradant levels might be found, where suitable product
performance objectives could be achieved.
5.5. Case Study 5: Comparison of Spiked and

Recrystallized API in Dissolution Testing. A study by
Theil et al. investigated the impact of spiked vs recrystallized
API in an amorphous formulation.10 To generate samples with
precise levels of recrystallized API, transmission Raman
spectroscopy in combination with chemometrics was used to

Figure 11. (a) Dissolution profiles of bicalutamide/PVPVA ASDs prepared by HME containing 0−30% residual crystallinity. (b) Polarized light
microscopy images of ASD particles undergoing matrix crystallization over 30 min. (c, d) Crystallization kinetics of ASD without (c) and with (d)
crystalline content, which crystallize to the metastable polymorph (form 2) or stable polymorph (form 1). Figure adapted and reprinted with
permission from ref 9. Copyright 2021 Springer Nature.

Figure 12. XRPD patterns of naproxen(NPX)/PVP ASDs prepared by spray drying (SD) and hot melt extrusion (ME): (a) initial measurements
and (b) following 8 weeks storage at 40 °C. Figure reprinted with permission from ref 75. Copyright 2017 Elsevier.
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monitor and quantify the level of crystallinity in a tablet
exposed to accelerated storage conditions. Two dissolution
methods were used, both representing sink conditions but with
different media additives, stirring speeds, and media temper-
atures. Depending on the method used and source of
crystallinity, dissolution profiles of samples containing 0−
40% crystallinity were nearly indistinguishable or remarkably
different (Figure 13). This indicates that development of
sensitive dissolution methods to detect crystallinity and
determine its potential impact on release is critical to an
appropriate risk assessment. In particular, spiked crystals
poorly represent the impact of crystals developed within the
formulation (either from storage or manufacturing), as has
been shown in other studies where crystals of different
properties or origin have been used.8,18,87,140

5.6. Case Study 6: Tacrolimus ASD Formulations.
Dissolution testing of commercial tacrolimus capsules, both
fresh and containing different amounts of crystalline drug, were
conducted with different dissolution volumes, which modulates
the driving force for dissolution and crystallization.139 The
brand, Prograf, was found to be not susceptible to
crystallization, while one generic formulation crystallized
readily.161 By exposing the generic formulation to elevated
temperature/humidity, tacrolimus could be completely crystal-
lized. Physical mixtures of fresh and crystallized tacrolimus
formulation were prepared to yield samples of varying levels of
crystallinity. By modulating the sink index through constant
dose and varying dissolution volume,80 the impact of
crystallinity could be investigated. At the highest sink index
(largest dissolution volume per dose), ASDs containing up to
20% crystallinity showed no marked decrease in achievable
supersaturation (Figure 14a). In contrast, at the lowest sink
index (lowest dissolution volume per dose), all samples
containing crystallinity showed loss in achievable super-
saturation as well as desupersaturation due to greater

thermodynamic driving force for crystallization (Figure 14b).
Interestingly, at both dissolution conditions, the 100%
crystallized ASD could achieve concentrations above the
crystalline solubility (Figure 14a,b). In a follow up in vivo
study in beagle dogs, the 100% crystallized sample similarly
outperformed the control crystalline suspension in both AUC
and Cmax (Figure 14c).18 This observation could result from a
few possible reasons: (1) the product cannot be fully
crystallized in the matrix, and this cannot be detected due to
analytical limitations, (2) the resultant crystals formed in the
matrix are highly defective, or (3) the crystals formed are very
small which provides for rapid redissolution which somewhat
mitigates the conversion to the crystalline state. These general
observations highlight the importance of using a representative
crystalline material when undertaking risk assessment of
amorphous formulations.
5.7. Case Study 7: Physical Stability of Miscible and

Immiscible ASDs. Ivanisevic has demonstrated that physical
stability under ambient conditions is directly related to the
miscibility of the formulated matrix.13 Broadly, miscible
systems were observed to be stable and resistant to
crystallization. Systems classified as immiscible, or phase-
separated, developed crystals within 1−2 months. All samples
were prepared by the solvent evaporation method and were
stored under ambient conditions for the duration of stability
monitoring. Two examples will be highlighted here.

Nifedipine/PVP (30−70% drug loading) systems were
classified as miscible by structure-based, thermal, and
spectroscopic techniques.162 Interestingly, the 70% drug
loading sample had some residual crystallinity detected
immediately after preparation, which then developed for the
first 6 months of stability monitoring and then did not
crystallize further (Figure 15a). The total amount of
crystallinity was estimated to be less than 10%. Ivanisevic
hypothesized that the crystallinity observed was the amount of

Figure 13. Dissolution profiles of fenofibrate ASD tablets containing 0−40% crystalline API, spiked (i, iii) or recrystallized (ii, iv). Two dissolution
methods were used (i, ii: SDS-based dissolution media) and (iii, iv) CTAB-based, which alter the sensitivity of detecting crystals in the formulation.
Figure reprinted with permission from ref 10. Copyright 2018 American Chemical Society.
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drug not stabilized by the polymer, and that the remainder of
the amorphous matrix remained miscible and stable, despite
the presence of some crystallinity.13

Two formulations of ketoconazole/PVP (30% and 70% drug
loading) were observed to be miscible and immiscible/phase-
separated. While the 30% drug loading sample did not
crystallize within approximately 1 year of monitoring, the
70% drug loading sample crystallized after approximately 2
months, whereby crystallinity extent progressed over the
duration of the study (Figure 15b).13

While storage conditions with respect to the formulation’s
properties, such as Tg, were certainly important to the author’s

findings, the study highlights that the properties of the
surrounding matrix dominate the ability of any crystalline
material, either nucleated during storage or from the
manufacturing process, to grow. In this case, the failure
mode consisted of the drug loading being too high for the
polymer to stabilize.

6. ASSESSMENT OF CRITICAL QUALITY ATTRIBUTES
6.1. Risk Assessment. Through the case studies, several

high and low risk aspects of the drug properties, ASD
formulation, and crystallization mechanisms were highlighted.
These as well as other considerations found in Figure 16 will
be discussed, for the purposes of assessing the risk of
crystallinity in amorphous formulations. The pyramid structure
of risk assessment categories intends to suggest scientific
rationale, rather than a sequence, workflow, or decision tree.
6.1.1. Drug Physicochemical Properties. Amorphous

formulations take advantage of the thermodynamic solubility
advantage found by selecting the amorphous form of a drug.
The drug may have several polymorphic forms as well. A first

Figure 14. Dissolution profiles of a 5 mg dose of tacrolimus from
brand (Prograf) and generic ASDs formulations containing varying
levels of crystallinity in (a) 450 mL and (b) 40 mL of dissolution
media. (c) Blood concentration vs time of tacrolimus amorphous and
crystalline samples. Figure adapted and reprinted from refs 18 and
139. Copyright 2018 Elsevier and 2019 American Chemical Society.

Figure 15. XRPD patterns of ASD samples initially classified as (a)
miscible (nifedipine/PVP 70% drug loading) and (b) immiscible
(ketoconazole/PVP 70% drug loading) over time. Crystallization
initiated in the ketoconazole sample after approximately 2 months and
progressed for the remainder of the study. Some crystals were
observed in the nifedipine sample initially after solvent-based
manufacturing, which grew slightly for the first 6 months and then
ceased growing with the total estimated crystalline content less than
10%. Figure adapted and reprinted from ref 13. Copyright 2010
Elsevier.
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consideration regarding risk of crystallinity in an amorphous
form is whether or not a crystalline form of the drug molecule
exists. For example, ledipasvir and clopidogrel have no known
crystalline forms. The existence of polymorphic forms may be
advantageous for drugs undergoing crystallization following
dosing of an ASD formulation. For example, if crystallization
typically occurs from solution to the metastable polymorph,
the transient higher solubility of this form enables some level
of supersaturation to be maintained with respect to the
equilibrium solubility of the thermodynamically stable form
until the final polymorphic transformation occurs. However, as
was observed in the bicalutamide case study, if crystals of the
stable polymorph are found in the formulation, the natural
crystallization pathway of the amorphous solid to the
metastable form no longer occurs, removing the solubility
advantage of the metastable form.9 In that case, crystallinity
(stable polymorph) in the formulation was highly detrimental.

The crystallization tendency of a drug is another risk factor
for an amorphous formulation. Classification systems have
been developed to categorize drug molecules.69,163−165

Frequently, crystallization tendency is estimated by applying
a cooling/reheating cycle to the melt.163 Parameters such as
molecular mobility and configurational entropy (heat capacity
change at Tg) have been used to estimate and predict
amorphous stability.165−167 Certainly, molecular mobility may
be modified within an amorphous solid dispersion formulation
through incorporation of a high Tg polymer and by “locking in”
configuration through drug−polymer interactions. However,
these features do not guarantee stability, as phase separation
and crystallization may yet occur due to other underlying risk
factors or matrix changes due to storage conditions and water
uptake.19 Newman and Zografi have also emphasized that
other factors beyond molecular mobility contributed to
crystallization of a glass, such as the method used to produce
the glass, heterogeneous nucleation due to processing
conditions, secondary Johari−Goldstein relaxations, nondiffu-
sional crystal growth in the glass, and surface crystallization.89

6.1.2. ASD Formulation Considerations. While this
Perspective cannot provide an extensive overview of best
practices for formulating ASDs, several main points will be
highlighted with the focus on risk factors for crystallization
failure within the formulation (i.e., physical stability failure)
and within the in vitro/in vivo dissolution environment.

The selection of a polymer contributes to ASD performance
both from a stability and dissolution perspective. Reduced risk
of physical stability failure will be found with a miscible, high
Tg polymer with low hygroscopicity, at lower drug loadings
(this is both a thermodynamic and kinetic effect), and in the
presence of drug−polymer interactions that reduce crystal-
lization kinetics.19,67,74,90 Under these circumstances, even in
the presence of crystal seeds (i.e., residual crystals from a
manufacturing failure), slow crystal growth rates could be
expected, as the surrounding matrix has limited crystallization
propensity.

In a dissolution environment, the polymer can facilitate
dissolution, as well as prolong supersaturation. However,
strong drug−polymer interactions in the ASD matrix may
impede release performance if they persist in the presence of
water.74,168 Crystal seeds can be detrimental to release
performance, by facilitating solution-mediated or solid-
mediated (matrix) crystallization. Depending on the propen-
sity for crystal growth, the impact of these seeds can vary
widely. Polymer adsorption onto crystal seeds can poison
crystal growth.8 Supersaturation conditions will modulate the
thermodynamic driving force for crystallization.8,9 The matrix
crystallization pathway is also reduced by modulation of drug
loading.160

The impact of additional formulation components has
similar considerations. Surfactant inclusion is expected to
negatively impact physical stability by Tg reduction.169,170

Surfactants can also induce a wide variety of phase separation
morphologies,171−173 which can be expected to influence
crystallization behavior. Surfactants can facilitate dissolution,
but also induce solution phase crystallization.116,173−180

Figure 16. Categories for assessment of risk of crystallinity within amorphous solid dispersion formulations.
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6.1.3. Stability Storage Conditions. Most ASD composi-
tions are likely to be within the thermodynamically metastable
and kinetically stable zone (Figure 3a, region 2) at ambient
storage conditions, and many studies have investigated aspects
of kinetic stabilization.19,56,65,66,181 The temperature−compo-
sition phase diagram found in Figure 3a is for a water-free
system, which does not reflect the practical environmental
considerations. Importantly, water forms a third component of
the ASD matrix, and changes to relative humidity can shift the
phase behavior and stability of the composition through
changes to the glass transition temperature and degree of
supersaturation, as well as possible phase separation/
crystallization. Figure 17 highlights these changes in the
phase diagram comprising the model system of naproxen and
several polymers with increasing relative humidity. First, we
can examine the figure with respect to thermodynamic
solubility by comparing the placement of the composition

(orange stars) with respect to the solubility line at the same
temperature (solid lines). By transitioning from dry conditions
(a) to typical and high levels (b, c) of humidity exposure at
ambient temperature, the 40% drug loading composition
becomes more thermodynamically unstable, as the solubility
line for each polymer system shifts to lower compositions. The
20% drug loading composition, while initially thermodynami-
cally stable for the PVP (blue) and PVPVA (gray) systems,
becomes thermodynamically metastable at 75% relative
humidity conditions. Second, we can examine Figure 17 with
respect to kinetic stability by comparing the placement of the
composition (orange stars) with respect to the glass transition
lines (dotted lines). Both 20% and 40% compositions initially
are kinetically stabilized with Tg − T of ranging from 10 to 100
°C dry conditions (compare to the rule of thumb for kinetic
stability:182 Tg − T > 50 °C). Due to water uptake at 60% RH,
the kinetic stability reduces to −5 to 25 °C, depending on the
drug load and polymer system. With water uptake at 75% RH,
the glass transition temperatures of the 20% drug loading ASDs
with PVP and PVPVA (blue and gray dotted lines) are below
ambient conditions and are no longer kinetically stabilized; a
similar result is observed for the 40% drug loading ASDs with
PVPVA and HPMCAS (gray and black dotted lines). This
example highlights the importance of packaging design for
humidity production during long-term storage and once
dispensed to patients.

Beyond the humidity modulation example shown here, it
can also be important to deconvolute the impact that
temperature modulation may have on product stability. For
any given composition, modulating the storage temperature
will impact the mobility of the amorphous phase. This impacts
both the extent of kinetic stability (Tg − T), as well as the
relative supersaturation, both of which influence the
crystallization tendency of the system. For some systems
with higher crystallization risk, this may suggest that
subambient temperatures may be the most appropriate long-
term stability storage condition.

For samples containing crystallinity, the degree of kinetic
stability and supersaturation are both important to the
potential for crystal growth. For a system that is not
supersaturated, the amorphous matrix is thermodynamically
stable, regardless of the presence of crystals, and the crystals
will not grow. For thermodynamically metastable systems, the
mobility in the system (Tg − T) will impact the crystal growth
rate. These types of considerations were seen in the physical
stability case study, where crystal growth ceased when the
solubility of the amorphous drug within the polymeric matrix
was presumably reached (Figure 15a).
6.1.4. Dissolution/Supersaturation Considerations. Risk

factors for the presence of crystallinity on dissolution
performance have been discussed by Moseson et al.9 and
Purohit et al.124 Whether or not an in vitro dissolution test can
detect the presence of crystallinity or its impact be observed
depends on the design of the test method,80,124,126,140 and a
QC test method with sink conditions is unlikely to provide this
level of scrutiny. Beyond previously discussed complexities of
amorphous drug−polymer systems such as those highlighted
throughout the manuscript (crystallization tendency, solution-
mediated crystallization, solid-mediated crystallization, super-
saturation conditions, crystal properties) and their relation to
the impact of crystallinity in an ASD product, it is pertinent to
highlight some additional advanced concerns regarding

Figure 17. Phase diagrams calculated with PC-SAFT for naproxen
(NAP)/polymer ASDs at different storage conditions: (a) 0% RH,
(b) 60% RH, and (c) 75% RH. Blue, gray, and black represent the
different excipients PVP, PVPVA64, and HPMCAS, respectively. The
solid lines represent the calculated solubility lines, while the dashed
lines represent the calculated glass-transition temperatures. The x-axis
refers to the API content in the water-free ASDs. The orange stars
mark the 20% and 40% drug loading compositions, to enable ease of
reader identification of changes that occur due to relative humidity
exposure with respect to thermodynamic and kinetic stability. Figure
adapted and reprinted with permission from ref 181. Copyright 2017
American Chemical Society.
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dissolution test design, product design considerations, and
media parameters.

The use of a one-stage or two-stage dissolution test may be
critically important to detect certain failure mechanisms.183

Nguyen et al. investigated an interesting case study featuring
ASDs formulated with various enteric polymers.184 The pH of
the gastric medium influenced the extent of matrix
crystallization observed and therefore the final extent of
release. At low gastric pH (pH 1.6), where the drug was highly
soluble, some leaching was observed in the first stage and a
good extent of drug release occurred in the second stage. At
intermediate gastric pH (pH 3), where the drug has become
less soluble, matrix crystallization could proceed, resulting in
incomplete drug release in the second stage. A single stage test
in pH 6.5, where the polymer could ionize, demonstrated
complete release. In this instance, a pH shift test from pH 3 to
pH 6.5 would have improved discriminatory ability to detect
the presence of crystallinity in the ASD.

While the influence of the drug’s pH-dependent solubility on
its release profile is well-known,185 the pH-dependent
solubility of the polymer is also of relevance to rate and
extent of drug release. For example, a negative food effect was
observed for an ASD formulated with HMPCAS HF.186 As this
polymer does not ionize and dissolve until ≥ pH 6.8, a
different extent of release is achieved in dissolution tests where
biorelevant media of different pH and composition were
tested. These observations together suggest that the pH
conditions in the GI tract in the fed state were below the
polymer’s threshold pH for release, thereby resulting in
reduced bioavailability of the drug.

Media composition also influences crystallization kinetics.
Nucleation induction time can both increase or decrease in the
presence of complex media when compared to its blank
buffer.187 Varied levels of lecithin and bile salts have been
shown to alter crystallization behavior.88,188−190 The diversity
of bile salts in vivo compared to the commercially available
biorelevant media (sodium taurocholate only) is an additional
complicating factor to media design for predictive in vitro
dissolution testing.187,190,191 Such variation in the in vitro test
design could lead to consequences for formulation design
decisions, for establishing accurate in vitro−in vivo correla-
tions, or for assessing risk of crystallinity in the formulation.
6.1.5. Crystal Origin and Micromeritic Properties. An

earlier section of this manuscript described the different
properties of reference materials as surrogates for the crystals
that may be found within ASDs. The potential for crystalline
material to originate based on a manufacturing- or storage-
based pathway should be considered by conducting a holistic
risk assessment. Samples containing crystallinity could
potentially be made by triggering failure mechanisms during
manufacture. For a spray drying process, an antisolvent (such
as water) could be added to the spray solvent to trigger phase
separation and/or crystallization.93,95 For hot melt extrusion,
by using lower processing temperatures, shorter residence
times (by modulating feed or screw speeds), or larger input
crystals, the process design space could be varied to induce
residual crystallinity.30,41

Crystal properties are relevant both in the context of
detection/quantification of crystalline content, as well as when
evaluating crystal growth and the resultant desupersaturation
during in vitro testing. Hermans et al. used milled and unmilled
API which altered the sensitivity of the dissolution method to
detect crystallinity.140 Moseson et al. observed greater

desupersaturation due to crystal growth in ASD samples
containing residual crystals compared to those with externally
added crystal seeds, which was hypothesized to be due to (1)
greater surface area for an equivalent amount of crystal seeds
and (2) higher surface energy for residual crystal seeds due to
underlying defect structure.8

A further consideration is the properties of the surrounding
amorphous matrix. Even if residual crystals are present, the
matrix itself may have properties that reduce the risk for crystal
growth, such as a high glass transition temperature.
6.2. Additional Considerations. 6.2.1. Phase Separa-

tion. In product risk assessments, not only does crystallization
need to be considered, but also other types of phase separation,
notably demixing to yield polymer-rich and drug-rich domains.
While this Perspective has focused on crystallinity, the
potential for negative impacts of this type of phase separation
cannot be understated. Phase separation is far harder to
determine by common solid-state characterization methods,
such as PXRD or PLM. Yet, phase separation due to poor
miscibility of drug and polymer at high drug loadings or
induced by water uptake can occur, significantly impacting the
dissolution profile and resultant bioavailability.192

6.2.2. ASDs as Drug Products. The design and performance
of amorphous solid dispersions are commonly studied in their
powder form as drug product intermediates. However,
clinically relevant ASDs are drug products, in which the ASD
drug product intermediate is subjected to downstream
processing and additional excipients are added to form the
tablet or capsule. Downstream processing such as milling or
compression are high energy unit operations, which can induce
demixing or crystallization of the ASD.160,193−195 High
disintegrant levels are commonly required to achieve
disintegration times consistent with immediate release
tablets,196,197 while some commercial ASDs such as ritonavir
are formulated as erodible tablets.196,198 Regardless of the
disintegration strategy, release performance is linked to the
ASD drug loading, ASD polymer type, and tablet formula-
tion.197,199,200 The dilution of the ASD into an excipient matrix
results in additional complexity to detect crystallinity within a
drug product. These are just a few high level considerations for
assessing the significance of crystallinity within an ASD drug
product.
6.3. Specifications. The detection of drug solid-state form

changes, in particular from amorphous to crystalline, presents a
significant technical challenge to drug product developers. ICH
Q6A suggests that surrogate tests, such as dissolution, are
typically suitable to monitor product performance, while solid-
state methods should be considered a last resort for a test and
acceptance criteria.5 While the purpose of this Perspective is
not to offer regulatory guidance, we have presented numerous
case studies and scientific fundamentals that support general
caution with this approach. The acceptable level of variability
within general product quality tests such as content uniformity
and dissolution do not enable the specificity to quantify
crystallinity or nonambiguously identify the origin of product
quality issues. For example, a QC dissolution test is typically
designed to detect formulation and manufacturing error, and
differences in release rate may occur that are unrelated to
crystallinity and may not be clinically relevant.126,129,140,153,201

Further, the sink conditions typically associated with such a
test do not discriminate for the solubility-based driving force
differences between a crystalline and amorphous form.
Hermans et al. performed a statistical analysis and found that
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it might be achievable to detect 6% crystalline content in the
drug product, assuming no additional variability from sources
such as: (1) dosage form assay, (2) analytical varability from
both the assay and dissolution methods, or (3) other
formulation or manufacturing contributions which may modify
release rate.140 It is clear that each of those assumptions does
not apply to a GMP batch manufacturing and QC testing
environment. The complexity associated with designing a
nonsink QC dissolution test that would meet the needs for
detecting/quantifying crystallinity with sufficient sensitivity as
well as manufacturing-related criteria suggests that this
approach should be applied only when justified by a thorough
risk assessment. Such a risk assessment would potentially
encompass product development studies, formulation model-
ing approaches such as PC-SAFT, and in vitro and in vivo
correlations, which, in concert, evaluate the likelihood of
crystallinity formation during manufacturing or storage as well
as the potential impact on bioavailability. Further, if solid-state
detection methods can be developed with appropriate
sensitivity and relevance and subsequently linked to bio-
performance, this could be a suggested appropriate alternative
approach. In an industrial context, establishing clinically
relevant specifications must be done in a risk-based framework,
balanced by resources, time, and clinical outcomes.

7. CONCLUSIONS
Crystallinity is a complex critical quality attribute because
detection and quantification can be an analytical challenge and
because there is no common standard for acceptable levels
across all drug−polymer systems. This is because of the
inherent complexity that crystalline content brings to the
performance of an amorphous solid dispersion. In some drug−
polymer systems, crystal growth rates remain low, and low
levels of crystallinity have little impact on the achievable
supersaturation profile. However, in some systems, even X-ray
amorphous systems may undergo rapid crystallization as a
result of trace crystallinity, resulting in highly detrimental
impact to supersaturation. This Perspective has attempted to
comprehensively cover the theoretical background of the
origins of crystallinity within ASDs and the potential
significance on ASD performance. We highlighted the
analytical difficulties in detecting and quantifying crystalline
content and reviewed a wide range of case studies where
crystallinity detection and significance to dissolution perform-
ance or physical stability was assessed. Ultimately, evaluating
the risk of crystallinity to an ASD product performance is not
straightforward and should be considered for each product
using studies designed to identify the formulation’s potential
failure modes with the goal of generation of in vitro−in vivo
correlations.
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